\(\int \frac {\csc (c+d x)}{(a-a \sin ^2(c+d x))^2} \, dx\) [53]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 47 \[ \int \frac {\csc (c+d x)}{\left (a-a \sin ^2(c+d x)\right )^2} \, dx=-\frac {\text {arctanh}(\cos (c+d x))}{a^2 d}+\frac {\sec (c+d x)}{a^2 d}+\frac {\sec ^3(c+d x)}{3 a^2 d} \]

[Out]

-arctanh(cos(d*x+c))/a^2/d+sec(d*x+c)/a^2/d+1/3*sec(d*x+c)^3/a^2/d

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3254, 2702, 308, 213} \[ \int \frac {\csc (c+d x)}{\left (a-a \sin ^2(c+d x)\right )^2} \, dx=-\frac {\text {arctanh}(\cos (c+d x))}{a^2 d}+\frac {\sec ^3(c+d x)}{3 a^2 d}+\frac {\sec (c+d x)}{a^2 d} \]

[In]

Int[Csc[c + d*x]/(a - a*Sin[c + d*x]^2)^2,x]

[Out]

-(ArcTanh[Cos[c + d*x]]/(a^2*d)) + Sec[c + d*x]/(a^2*d) + Sec[c + d*x]^3/(3*a^2*d)

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 308

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 2702

Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[1/(f*a^n), Subst[Int
[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 3254

Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Dist[a^p, Int[ActivateTrig[u*cos[e + f*x
]^(2*p)], x], x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0] && IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \csc (c+d x) \sec ^4(c+d x) \, dx}{a^2} \\ & = \frac {\text {Subst}\left (\int \frac {x^4}{-1+x^2} \, dx,x,\sec (c+d x)\right )}{a^2 d} \\ & = \frac {\text {Subst}\left (\int \left (1+x^2+\frac {1}{-1+x^2}\right ) \, dx,x,\sec (c+d x)\right )}{a^2 d} \\ & = \frac {\sec (c+d x)}{a^2 d}+\frac {\sec ^3(c+d x)}{3 a^2 d}+\frac {\text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\sec (c+d x)\right )}{a^2 d} \\ & = -\frac {\text {arctanh}(\cos (c+d x))}{a^2 d}+\frac {\sec (c+d x)}{a^2 d}+\frac {\sec ^3(c+d x)}{3 a^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.30 \[ \int \frac {\csc (c+d x)}{\left (a-a \sin ^2(c+d x)\right )^2} \, dx=\frac {-\frac {\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )}{d}+\frac {\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{d}+\frac {\sec (c+d x)}{d}+\frac {\sec ^3(c+d x)}{3 d}}{a^2} \]

[In]

Integrate[Csc[c + d*x]/(a - a*Sin[c + d*x]^2)^2,x]

[Out]

(-(Log[Cos[(c + d*x)/2]]/d) + Log[Sin[(c + d*x)/2]]/d + Sec[c + d*x]/d + Sec[c + d*x]^3/(3*d))/a^2

Maple [A] (verified)

Time = 0.76 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.04

method result size
derivativedivides \(\frac {\frac {1}{3 \cos \left (d x +c \right )^{3}}+\frac {1}{\cos \left (d x +c \right )}+\frac {\ln \left (\cos \left (d x +c \right )-1\right )}{2}-\frac {\ln \left (1+\cos \left (d x +c \right )\right )}{2}}{d \,a^{2}}\) \(49\)
default \(\frac {\frac {1}{3 \cos \left (d x +c \right )^{3}}+\frac {1}{\cos \left (d x +c \right )}+\frac {\ln \left (\cos \left (d x +c \right )-1\right )}{2}-\frac {\ln \left (1+\cos \left (d x +c \right )\right )}{2}}{d \,a^{2}}\) \(49\)
norman \(\frac {\frac {4 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {8}{3 a d}-\frac {4 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}}{a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{2} d}\) \(85\)
parallelrisch \(\frac {\left (9 \cos \left (d x +c \right )+3 \cos \left (3 d x +3 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+12 \cos \left (d x +c \right )+6 \cos \left (2 d x +2 c \right )+4 \cos \left (3 d x +3 c \right )+10}{3 a^{2} d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(92\)
risch \(\frac {2 \,{\mathrm e}^{5 i \left (d x +c \right )}+\frac {20 \,{\mathrm e}^{3 i \left (d x +c \right )}}{3}+2 \,{\mathrm e}^{i \left (d x +c \right )}}{d \,a^{2} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d \,a^{2}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d \,a^{2}}\) \(96\)

[In]

int(csc(d*x+c)/(a-a*sin(d*x+c)^2)^2,x,method=_RETURNVERBOSE)

[Out]

1/d/a^2*(1/3/cos(d*x+c)^3+1/cos(d*x+c)+1/2*ln(cos(d*x+c)-1)-1/2*ln(1+cos(d*x+c)))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.49 \[ \int \frac {\csc (c+d x)}{\left (a-a \sin ^2(c+d x)\right )^2} \, dx=-\frac {3 \, \cos \left (d x + c\right )^{3} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 3 \, \cos \left (d x + c\right )^{3} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 6 \, \cos \left (d x + c\right )^{2} - 2}{6 \, a^{2} d \cos \left (d x + c\right )^{3}} \]

[In]

integrate(csc(d*x+c)/(a-a*sin(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

-1/6*(3*cos(d*x + c)^3*log(1/2*cos(d*x + c) + 1/2) - 3*cos(d*x + c)^3*log(-1/2*cos(d*x + c) + 1/2) - 6*cos(d*x
 + c)^2 - 2)/(a^2*d*cos(d*x + c)^3)

Sympy [F]

\[ \int \frac {\csc (c+d x)}{\left (a-a \sin ^2(c+d x)\right )^2} \, dx=\frac {\int \frac {\csc {\left (c + d x \right )}}{\sin ^{4}{\left (c + d x \right )} - 2 \sin ^{2}{\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

[In]

integrate(csc(d*x+c)/(a-a*sin(d*x+c)**2)**2,x)

[Out]

Integral(csc(c + d*x)/(sin(c + d*x)**4 - 2*sin(c + d*x)**2 + 1), x)/a**2

Maxima [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 59, normalized size of antiderivative = 1.26 \[ \int \frac {\csc (c+d x)}{\left (a-a \sin ^2(c+d x)\right )^2} \, dx=-\frac {\frac {3 \, \log \left (\cos \left (d x + c\right ) + 1\right )}{a^{2}} - \frac {3 \, \log \left (\cos \left (d x + c\right ) - 1\right )}{a^{2}} - \frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{2} + 1\right )}}{a^{2} \cos \left (d x + c\right )^{3}}}{6 \, d} \]

[In]

integrate(csc(d*x+c)/(a-a*sin(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

-1/6*(3*log(cos(d*x + c) + 1)/a^2 - 3*log(cos(d*x + c) - 1)/a^2 - 2*(3*cos(d*x + c)^2 + 1)/(a^2*cos(d*x + c)^3
))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 107 vs. \(2 (45) = 90\).

Time = 0.30 (sec) , antiderivative size = 107, normalized size of antiderivative = 2.28 \[ \int \frac {\csc (c+d x)}{\left (a-a \sin ^2(c+d x)\right )^2} \, dx=\frac {\frac {3 \, \log \left (\frac {{\left | -\cos \left (d x + c\right ) + 1 \right |}}{{\left | \cos \left (d x + c\right ) + 1 \right |}}\right )}{a^{2}} + \frac {8 \, {\left (\frac {3 \, {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {3 \, {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 2\right )}}{a^{2} {\left (\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} + 1\right )}^{3}}}{6 \, d} \]

[In]

integrate(csc(d*x+c)/(a-a*sin(d*x+c)^2)^2,x, algorithm="giac")

[Out]

1/6*(3*log(abs(-cos(d*x + c) + 1)/abs(cos(d*x + c) + 1))/a^2 + 8*(3*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 3*
(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 + 2)/(a^2*((cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 1)^3))/d

Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.87 \[ \int \frac {\csc (c+d x)}{\left (a-a \sin ^2(c+d x)\right )^2} \, dx=\frac {{\cos \left (c+d\,x\right )}^2+\frac {1}{3}}{a^2\,d\,{\cos \left (c+d\,x\right )}^3}-\frac {\mathrm {atanh}\left (\cos \left (c+d\,x\right )\right )}{a^2\,d} \]

[In]

int(1/(sin(c + d*x)*(a - a*sin(c + d*x)^2)^2),x)

[Out]

(cos(c + d*x)^2 + 1/3)/(a^2*d*cos(c + d*x)^3) - atanh(cos(c + d*x))/(a^2*d)